I assume that you already know:

1 km	$=1000 \mathrm{~m}$ or $10^{3} \mathrm{~m}$	12 in	$=1 \mathrm{ft}$
1 Meter	$=10$ decimeters $=100 \mathrm{~cm}=1000$ millimeters	3 ft	$=1 \mathrm{yd}=36$ inches
10 mm	$=1 \mathrm{~cm}$	5280 ft	$=$ mile
10 cm	$=1 \mathrm{dm}=100 \mathrm{~mm}$		

Volume 1 Liter $=1.056688209$ Quart $\quad 1 \mathrm{~L}=$ @1.057 Quart
Liter, cubic meter, cubic decimeter, cubic centimeter, cubic millimeter

Gallon, quart, pint, ounce

I assume that you already know:

| $1 \mathrm{~mm}^{3}=1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$ | 1 gallon $=4$ quarts |
| :--- | :--- | :--- |
| $1000 \mathrm{~mL}=1$ Liter | 1 quart $=2$ pints |
| 1 Liter $=10$ decimeters - deci $=$ ten | 1 pint $=16$ ounces |
| 1 Liter $=100$ centiliters - centi $=$ hundred | 1 pint $=2$ cups |
| 1 Liter $=1000$ millimeters - milli $=$ thousand | |
| $1000 \mathrm{~L}=1 \mathrm{~kL}$ | |

Weight and Mass $\quad 453.59237$ grams / pound
@ 454 g / lb
Milligram, gram, kilogram Ounce, pound, ton
I assume that you already know:

10 milligram	$=1$ centigram	1 Ton $=2000$ pounds
1000 mg	$=1$ gram	1 pound $=16$ ounces
1000 g	$=1 \mathrm{~kg}$	

Time

Second, minute, hour, day, millisecond, year

Energy 1 Calorie $=4.184$ Joules $\quad 1$ Cal raises 1 g of water 1 deg C
Metric Kilo, milli, micro, nano, mega, giga, tera, pico
Energy and Work Joule, Calorie [foot-pount, kilowatt-hour, BTI]
Currancy US Dollar, quarter, dime, nickel, penny
Euro, British Pound, Canadian Dollar

Notes on performing Calculations

1. WRITE DOWN THE MAIN FORMULA: e.g. Density $=\underset{\mathrm{cm}^{3}}{\mathrm{~g}}=\underset{\text { Mass (g) }}{\text { Volume }\left(\mathrm{cm}^{3}\right)}$
2. Write down any derived formula for what is to be calculated:

$$
\text { Volume }\left(\mathrm{cm}^{3}\right)=\frac{\text { Mass }(\mathrm{g})}{\text { Density } \mathrm{g} / \mathrm{cm}^{3}}
$$

3. Put in your values with units:

$$
\text { Volume }\left(\mathrm{cm}^{3}\right)=\frac{\text { Mass }(\mathrm{g})}{\text { Density } \mathrm{g} / \mathrm{cm}^{3}}=\frac{123.4 \mathrm{~g}}{1.00 \mathrm{~cm}^{3}}=123.4 \mathrm{~g} / \mathrm{cm}^{3}
$$

4. Cancel out the units - be sure your answer is in the correct units
5. Do The Math Add / Subtract Multiply / Divide Do it to many digits
6. Calculate the number of Significant Digits that need to be in the answer, use proper rounding.
7. Put the answer in the correct Scientific Notation [Power of 10], if needed
8. SHOW ALL MATH ALL FORMULAE ALL UNITS AND ALL UNITS CANCELING.
